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Recent experimental data show that the scattered intensity distribution from dense solutions undergo-
ing diffusion limited aggregation exhibits a peak at a nonzero wave vector. This article presents a simple
phenomenological model based on the conjecture that the form factor for a realistic cluster should satis-
fy local mass conservation and hence exhibit a pronounced depression at zero wave vector. The model
introduces two characteristic lengths, the cluster radius R, and the radius R, of the depletion region
feeding the growing cluster, mass being conserved over the latter length. The intensity distributions ob-
served during the initial stages of the aggregation process are interpreted on the basis of the form factor
alone, while the description of the distributions in the later stages, in which scaling occurs, requires in
addition the introduction of a structure factor which takes into account steric interactions among the
clusters. The model shows remarkably good agreement with the experimental data, and also explains
why earlier measurements on dilute solutions failed to exhibit the peak at a nonzero wave vector.

PACS number(s): 82.70.Dd, 81.10.Dn, 05.40.+7J, 64.60.Cn

I. INTRODUCTION

In a recent paper [1] it has been shown that the scat-
tered pattern from an aggregating colloidal system may
exhibit a peak at a finite wave vector, very much like a
separating system undergoing spinodal decomposition
(SD). Such a feature is also present in a series of recent
scattering experiments [2—9] on a variety of systems, all
presenting an irreversible transition to a stable or time in-
dependent state which occurs via a coarsening process
that eventually leads to the formation of stable phases. It
should be mentioned that similar scattered intensity dis-
tributions are also observed in systems at equilibrium,
such as the copolymer melts presenting the so-called
“correlation hole” effect [10].

As it is well known, static light scattering has been
widely used in connection with colloidal aggregation
studies. One of the reasons for the success of static light
scattering is undoubtedly associated with the easiness of
the interpretation of the data and with the possibility of
extracting, under the assumption of no interaction among
aggregates, useful information such as the average aggre-
gation number, the average radius of gyration, and the
fractal dimension [11-13].

All the earlier scattering experiments on colloidal ag-
gregation were performed on fairly dilute samples, and
yielded scattered intensity distributions I(g) showing
their maximum value at ¢ =0, g being the scattering
wave vector, ¢ =41\~ 'n sin(6/2), where n is the index of
refraction of the scattering medium, A the wavelength in
vacuum of the light beam, and 6 the scattering angle. In
the attempt of obtaining data on the late stages of aggre-
gation, some of us [1] decided to investigate aggregation
processes of smaller monomers, so that even at large ag-
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gregation numbers the relevant features of I(g) would fall
within the range of g values accessible to the low angle
light scattering apparatus. Surprisingly, it was found [1]
that I(qg) did exhibit a peak value I,, at a nonzero wave
vector g,,, with I,, growing in the course of the aggrega-
tion process and g,, moving toward smaller and smaller
values. Furthermore, the data of Ref. [1] show a very in-
teresting scaling behavior of I(q), somewhat similar to
that observed in SD, which holds during the late stages of
the aggregation process.

In this paper we present a simple model that quantita-
tively accounts for the results described in Ref. [1]. The
model is mainly based on the approach used in Ref. [3] to
explain the neutron scattering data on the kinetics of a
crystal growth process, although additional ingredients
are introduced here to improve the fit in the later stages
of the aggregation. The physical origin of the peak of
I(q) lies in the fact that the aggregates grow by depleting
a surrounding region of size R, larger than the aggregate
size R;. The quantity R,(t) represents the distance over
which mass is actually fed by diffusion to the growing
cluster of size R (), at the aggregation time ¢. Since the
total number of monomers is conserved over a region of
size 2 R,, the scattered intensity has to be zero at ¢ =0,
and should remain low for 9 smaller than R, !. Since the
model and the fitting procedure introduce the two
characteristic lengths R; and R, and other relevant pa-
rameters, relations between these quantities and their
time evolutions will be derived.

The article is organized as follows. Section II recalls
briefly the most relevant features of the experimental re-
sults. In Sec. III we describe in detail the model, includ-
ing the definition of the two characteristic lengths. Sec-
tion IV is devoted to the data analysis and to the discus-
sion of the results of the fitting procedure.
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II. EXPERIMENT

We recall that the experiments were performed with
aqueous dispersions of polystyrene latex spheres with a
radius of 9.5 nm, in the range of monomer concentrations
8.25%X 10" cm™3<¢<8.25X10" cm™3 [1,14,15]. The
aggregation was induced by adding MgCl, to the disper-
sion. The scattered intensity distributions were measured
as a function of the aggregation time ¢ by using a special-
ly designed low-angle light scattering apparatus.

At fairly high salt content (8 mM MgCl,) a peak in
I(q) appears as soon as data can be gathered during the
course of the reaction [1]. While at earlier times the in-
tensity distribution does not exhibit scaling properties,
rather soon I(q) can be scaled onto a unique master
curve according to the scaling law

Flq/q,)=421(q/q,,) . (1)

Ultimately the reaction stops when the close packing
condition is reached. At such stage no further change in
I(g) occurs (it turns out that on a much longer time scale
very slow restructuring phenomena are present, but we
will ignore these processes here). If the monomer con-
centration is increased by keeping the salt concentration
unchanged, the whole process develops at a faster rate,
the most noticeable difference being now that the peak
position during the reaction and at the final state is now
shifted to larger g values, while the shape of F(q/q,,)
does not depend on the monomer concentration. Quite
different is the effect of changes in the salt concentration
¢, [14,15]. As c, is reduced, in the initial stage of the reac-
tion I(g) does not exhibit any peak in the range of wave
vectors accessible with our apparatus. Later on a peak
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FIG. 1. Data collected at different times during the early
stages of an aggregation performed with ¢, =4.37X10" cm ™3
and 4 mM MgCl,. The curves refer to the nonscaling regime
only and the solid lines are fits of the experimental data with the
form factor described in Eq. (7). In the inset a plot of the data
on a log-log scale is shown.

eventually appears, and again its intensity grows in time
and its position shifts to lower values of g, as shown in
Fig. 1. Scaling behavior does occur only in the late stages
of the reaction. If ¢ is even further decreased, the peak
makes its appearance at a much delayed time, and the
scaling behavior is confined to the time interval just
preceding the occurrence of close packing. Finally, typi-
cally at a salt content ¢,=2.5 mM, the peak never ap-
pears before the close packing conditions are reached.

In order to compare our phenomenological model with
the experimental results, we have selected, among all the
available data, those which are best suited to make evi-
dent the behavior in the various stages of the aggregation
process. The data belonging to the nonscaling regime are
obtained at intermediate salt content where they can be
followed more easily. On the contrary, the scaling regime
is studied in connection with data obtained at large c;.

III. MODEL

We find it instructive to report on initial failures to at-
tempt an interpretation of the scattered intensity distri-
butions by following what seemed to be the most obvious
way to proceed.

The form factor P(q) commonly used to describe a
fractal cluster is the Fisher-Burford (FB) distribution,
originally proposed in the context of critical phenomena,
which is given by [13]

A

q’R}
1+
3d, /2

P(q)=

a7z (2)

where d is the fractal dimension, R, the radius of gyra-
tion, and A is proportional to the weight average cluster
mass M. Equation (2) can be derived by recalling that

P(g)= [g(red’r 3)

and by making the hypothesis that the correlation func-
tion g(2) describing a fractal object has an expression
similar to that used to describe critical fluctuations [16]:

g(r)zrdf_aexp(—r\/?/Rg) . 4)

Actually, the FB form factor is the exact Fourier trans-
form of Eq. (4) for d,=2, while for d,72 Eq. (2) can be
considered as an approximation to the exact formula [16].
Since in our case d is very close to 2, we will utilize here
the FB form. At any rate, there is very convincing exper-
imental evidence that the FB distribution does quite ac-
curately describe the scattered intensity from fractal clus-
ters in dilute solutions [17-19].

In the case of concentrated solutions the scattered in-
tensity is no longer simply proportional to the form fac-
tor of the aggregates, but can be written as

I(q)<P(q)S(q), (5)

where S(gq) is the intercluster structure factor which
takes into account the existence of correlations among
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the mutual positions of the scattering objects. One could
think at first that the observation of scattered intensities
showing a peak at a nonzero wave vector and a pro-
nounced depression at ¢ =0 represents evidence of some
kind of intercluster interaction, most likely of steric na-
ture. This would suggest to interpret the experimental
results with Eq. (5) by keeping the FB expression as the
form factor and choosing an appropriate expression for
the structure factor S(gq). Although the clusters have a
rather diffuse boundary and a very tenuous bulk con-
sistence, we selected a hard sphere (HS) structure factor
obtained in the Percus-Yevick approximation. The ob-
tained fits were not satisfying at all. Indeed, since the FB
expression presents its maximum at ¢ =0 where the ex-
perimental I(q) is very close to O, the fit imposes a S (q)
taking values close to 0 at ¢ =0. This is possible for the
HS structure factor only when the volume fraction is very
large, in contrast with the experimental finding that I (q)
shows a well pronounced peak even in the early stages of
aggregation when the clusters are small and very sparse.

We then decided to follow a different approach. In re-
cent papers dealing with the growth of semiconductor
nanocrystals in a glassy matrix [2,3] it was argued that
the growth of the nanocrystal occurs at the expense of
semiconductor material drawn from the region immedi-
ately surrounding the crystal. Therefore the semiconduc-
tor mass is conserved on the volume made up with the
depletion volume and the crystal itself. We propose two
almost equivalent schemes, based on the same mass con-
servation arguments, for the calculation of I (g) associat-
ed with the growth of fractal aggregates. We want to
point out that while for real HS systems it is very clear
what the separate roles of the form factor and of the
structure factor are, here, with fuzzily defined objects
growing through the aggregation of neighboring objects,
such a sharp distinction loses its meaning.

We start by considering the scattered intensity at the
earlier stages of aggregation where the clusters are far
apart and steric interactions can be neglected, so that
I(g) can be considered proportional to the form factor of
the individual clusters. The very fact that I (0) is close to
zero implies, from Eq. (3), that the integral of g (7) must
vanish. Therefore, g () must swing negative at some in-
termediate distance, or, in other words, some kind of an-
ticorrelation is established at that range. While the inner
positive part of g(r) accounts for the cluster’s denser
core, the negative contribution at larger r is associated
with the depletion region.

The first scheme attempts to give an analytical expres-
sion to the form factor of the scattering object represent-
ed by cluster plus depletion volume, by starting from a
realistic form for the pair correlation function g(r). The
function g(r) must have the following features: (i) it
must account for the fractal morphology clearly evident
from the high g region of the scattering plots shown in
Fig. 1; (i1) it must exhibit an anticorrelation effect so that
its integral should vanish; (iii) it must present the possi-
bility of a scaling behavior. The simplest form satisfying
all these constraints is given by the difference between
two functions having the same structure as that shown in
Eq. (4):

d.—3| 1 rv'3
(N=g(r—g,(r=r’ exp | —
g\r 81 1) Rllif p Rl
1 exp | — rv3
7| g, ||

(6)

where R, and R, are the inner cluster core and depletion
region radii (clearly, R, is larger than R,), and the fac-
tors multiplying the exponentials are inserted to ensure
that the volume integral of g (r) vanishes. With this mod-
el R, is proportional to R,. Note that r presents a lower
cutoff at a value corresponding to the monomer radius r,
and that the use of Eq. (6) implies that ry <<R .

We present in Fig. 2 a plot of g (#) evaluated for a ratio
R, /R, =3. The plot in the main figure is on a highly ex-
panded vertical scale, and the distances on the linear hor-
izontal scale are reported in units of x =r/r; (we have
chosen R;=100r;). The position of the smallest attain-
able scaled distance x =1 cannot be appreciated, and for
small values of x the curve is off scale. The main purpose
for showing this plot is to point out how shallow the neg-
ative minimum actually is. The same curve is redrawn in
the inset where now the x axis is in a logarithmic scale,
the vertical scale being compressed so that the value of
the correlation function at x =1 does appear on the plot.
Notice that on this scale the minimum is not visible at all.
Yet the correlation function does have zero volume in-
tegral. The fact that the minimum is so shallow in Fig. 2
could probably explain why three-dimensional (3D) simu-
lations have not produced evidence of the existence of a
negative part of g (#) [20]. Indeed the statistical accuracy
needed to observe the shallow minimum can probably be
attained only by extremely large scale simulations. For
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FIG. 2. Sketch of the correlation function g (r) [see Eq. (6)]
as a function of r/r,. g(r) is evaluated for a ratio R, /R, =3,
and for r,=R,/100. The same curve is redrawn in the inset
over a more compressed vertical scale and with the x axis on a
log scale.
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the same reason it is likely that direct 3D observations
via, e.g., confocal microscopy will be equally doomed to
failure (they would also require larger monomers). At
variance, low-angle light scattering is ideally suited for
this job, since mass conservation implies large effects at
low g and statistical averaging is excellent.

The approximate form factor derived from Eq. (6)
reads

A A
P(q)= a7 77 )]
e IR i N
3d,/2 3d,/2

Equation (7) is the simplest modification of the commonly
used FB expression which accounts for the presence of a
peak at a nonzero wave vector, giving at the same time
zero scattered intensity at ¢ =0 [21] and the correct
behavior at large g.

The second approach we have followed starts from the
consideration that, in the case of a scattering object
which is not pointlike, the scattered field is given by the
addition of all the fields scattered by the different subvo-
lumes with the appropriate amplitude and phase, and the
scattered intensity is calculated by taking the modulus
square of the field. In our case, we describe the scattering
object by a continuous deterministic function 8(r) which
represents the local deviation from the average concen-
tration of dispersed material. We put 8(r)=38,+8,(r),
where §,(7) is the positive contribution due to the inner
core, and 8,(r) is the negative contribution due to the
depleted region. The mass conservation constraint re-
quires that the volume integral of 8(») be equal to zero.
This approach would lead us to write, instead of Eq. (7),
the following expression for P(q):

P(q)=[F,(g)+F,(@)]*, (8)
where
_ sin(qr)
Fi(q)= f4'n'r26j(r)Tdr ©)

Since, at large g, P(q) goes as [F;(g)]? it is reasonable
to assume that [F,(q)]? coincides with the FB distribu-
tion given in Eq. (2). If we also now assume that [F,(q)]?
is given by a FB distribution, we end up with the follow-
ing expression for P(q):

4 172
P(q)=
qu% df/Z
3df/2
17272
. A
l 2°R? ;72 . (10)
1
3df/2

We have found that the experimental data can be de-
scribed equally well by the two form factors presented in
Eq. (7) and Eq. (10). The trends followed by the fitting
parameters are quite similar for the two models, the main
difference being that the second model gives larger nu-

merical values for R,. Since the results obtained in the
two cases are very similar, we will only discuss in detail
the data interpretation based on the first model.

As we shall see, the form factor alone is not sufficient
to describe I(q) during the entire duration of the aggre-
gation reaction. In fact, when the close packing condi-
tion is approached, intercluster interactions have to be
considered. To do so, we have chosen a structure factor
that accounts for steric interactions only. For the sake of
simplicity, we use the hard sphere structure factor with
R as the hard sphere radius. There are various reasons
why our choice could be somewhat inadequate. First, the
fractal aggregates are tenuous inside and have fuzzy
boundaries. Second, the system is very likely po-
lydisperse, and the approximation used might not be very
accurate [22]. However, at the present stage of develop-
ment of our phenomenological model, it is probably un-
necessary to introduce a too detailed description of S (gq).

IV. DATA ANALYSIS

As it was pointed out above, the data presented in Fig.
1 refer to the initial stages of an aggregation process in-
duced in a dispersion containing 4 mM MgCl,. We found
that, in this stage, the data are well described by using
the form factor alone, and keeping the structure factor
identically equal to 1. The full lines in Fig. 1 represent
the best fit obtained by using the form factor of Eq. (7).
For simplicity, we have kept constant the fractal dimen-
sion at the value d,=2, so that the fit procedure yields
only the three parameters R, R, and A4.

In the later aggregation stage, the data are better de-
scribed by Eq. (5), where the form factor is still given by
Eq. (7) and the structure factor is the hard sphere one
Sus(gR,®P) which is a function of the product gR, and
of the volume fraction ® [23]. We show in Fig. 3 the best
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FIG. 3. Fit of an experimental curve in the scaling regime
performed with the form factor alone [see Eq. (7)]. The data

have been collected during the late stages of an aggregation per-
formed with ¢, =4.37X 10" cm ™3 and 6 mM MgCl,.
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fit to a scattering distribution which was gathered in the
time domain where scaling of I(g) does hold, during an
aggregation run at 6 mM MgCl,. The full line is an at-
tempt to fit the data with the form factor alone. As one
can notice, the fit is poor. In Fig. 4 we show a fit to the
same data in,which both form factor and structure factor
are used. The fit is now very good. In the figure, we show
the two separate contributions due to P(q) and Syg(q).
One can notice that even for the case shown here, the
structure factor contribution to the overall behavior is
not very pronounced.

A first important conclusion suggested by the fit is that
the presence of the peak in I (g) and the fact that 7(0)=0
are basically due to mass conservation applied to the
volume enclosing the cluster plus its depletion region,
and do not necessarily imply any ordering in the spatial
arrangement of clusters.

From the fitting procedure we can derive the time evo-
lution of the four parameters R, R,, A, and ®. We
show in Fig. 5 the time evolution of R; and R,, and in
Fig. 6 the time evolution of the ratio R,/R;. In both
figures the arrow indicates the time ¢, around which the
transition from nonscaling to scaling behavior occurs.
The inner core radius R, grows as a function of time, as
expected since the cluster size does increase during the
aggregation process. The behavior of R, is more com-
plex. The data show that it actually decays at first, rev-
ersing this trend when the scaling behavior sets in. The
size of the depletion region is essentially controlled by
diffusion processes. Initially the clusters grow by aggre-
gating monomers which have large diffusion coefficients
and can therefore diffuse over large distances in a given
time interval. When the clusters become larger, growth
is mainly due to cluster-cluster aggregation. The diffusing
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FIG. 4. Fit of the same curve shown in Fig. 3 by means of
I(q)=P(q)S(q) (solid line). The contributions of P(gq) and
S(q) are shown separately. S(q) is shown in the inset, while
P(q) is the dotted line.
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FIG. 5. Time evolution of the two radii R, and R, for a mea-
surement performed with ¢,=4.37X10" cm™3 and 6 mM
MgCl,. The arrow indicates the transition from nonscaling to
scaling behavior.

species have small diffusion coefficients, and this reduces
the effective size of the depletion region. To put this
matter in a more quantitative way, we recall that the
cluster mass M grows according to the law
dM
o IR
where J is the mass flow, and we have assumed that all
the clusters which cross the surface enclosing the grow-
ing cluster do form a bond. J is given by Fick’s law,

(11)
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FIG. 6. Time evolution of the ratio R, /R, for the same mea-
surement of Fig. 5. Again, the arrow indicates the transition
from nonscaling to scaling behavior.
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J=—pD grad(c), where p is the number density and D
the diffusion coefficient. Here p~p,/R? where p, is the
monomer concentration and the fractal dimension is tak-
en equal to 2, and D is inversely proportional to R;. For
a diffusion limited aggregation process it is known that
the mass should grow linearly with time, that is, dM /dt
is constant. The size R, of the depletion region can then
be estimated form the value of grad(c) at the cluster sur-
face. The steeper grad(c) is, the shorter the distance R,
beyond which the presence of a growing cluster is not felt
by the bulk solution. From the previous considerations
we find that

grad(c)|,=R‘zR1/po . (12)

In spite of the crudeness of the model, this relation ac-
counts for two important facts. First, as the cluster
grows, grad(c) gets larger, and therefore the radius R,
becomes smaller. Second, the actual value of R, depends
on the initial monomer concentration and it is larger at
lower values of p,. The fact that the ratio R, /R, comes
out to be inversely proportional to p, is very interesting
and can explain why previous experiments, performed at
much lower values of p, than those discussed here, have
failed to see the low g depression of I(gq). Note that the
form factor of Eq. (7) presents a maximum at a value g,,
given by

_V3
R,

12
R,

R, (13)

dm

If the ratio R, /R, is large, the maximum is shifted, at
fixed R, to very small angles, well outside the experi-
mentally accessible range. This explains the experimental
evidence that the peak never appears if the salt content is
sufficiently reduced [14]. In fact, in the slow aggregation
mode, monomers can diffuse over larger distances as a
consequence of the small sticking probability, so that the
ratio R, /R, is large at any aggregation rate. In the scal-
ing regime, the behavior of R, closely follows that of R,
as it is evidenced by the fact that the ratio R, /R, after
the initial decay, levels off at a constant value around
1.45 (see Fig. 6). It should be noted that scaling rigorous-
ly implies that the ratio R, /R should remain constant.
As pointed out before, this ratio changes rather rapidly
during the early nonscaling phases. In this regard we
want to stress that the fitting of the scattering distribu-
tions in the early phases requires only three floating pa-
rameters, and the statistical accuracy of the estimates of
R, and R, is at least as good as in the late scaling regime.
Indeed if one attempts to fit the early data by constrain-
ing the ratio R, /R to the constant value observed in the
scaling regime (R, /R;~1.45), the quality of the fitting
becomes definitely poor.

We present in Fig. 7 the behavior of the best-fit param-
eters A and ® versus the aggregation time. In the non-
scaling region, that is, for ¢ <t,, the parameter 4, which
is proportional to M, grows with time in a way consistent
with the law: A <R?. This is what is expected from
fractal aggregates having a fractal dimension close to 2.
We have no model for the observed behavior of A4 for
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FIG. 7. Growth of the best fit parameters A4 (a) and ® (b) for
a measurement performed with ¢, =4.37X 10 cm ™3 and 6 mM
MgCl,.

t >t,. It should be noted, in any case, that the best-fit
values of A4 in the scaling regime may be strongly
influenced by small changes of the structure factor S(q),
so that the values obtained in this regime should be treat-
ed with some caution. The volume fraction ® is also
growing with #, leveling off in the scaling regime, as ex-
pected.

As noted above, we have neglected polydispersity
effects. In principle, if the size distribution is known, it is
possible to generalize our model. In the dilute dispersion
regime, where interactions are negligible, I (g) is simply a
weighted average of form factors of clusters of different
sizes. Since each form factor is a peaked function start-
ing with zero value at ¢ =0, also I(q) will be zero at
g =0 and will present a peak at a finite wave vector. The
effect of polydispersity will be that of introducing a
smoothing in the shape of I(g). When interactions are
non-negligible, the fit becomes difficult because no analyt-
ical solutions are available for the structure factor of a
polydisperse system. However, one can say that, qualita-
tively, the effect should be again that of smoothing the
shape of I(q), still preserving the depression at small g
values. It should be noted that most of the results dis-
cussed in this article refer to situations close to the
diffusion-limited aggregation regime where a large po-
lydispersity in cluster size is not expected.

Finally, we must stress that all the data that we have
analyzed (only a small fraction of them is presented here)
do show an encouraging degree of consistency and all the
runs performed at various concentrations exhibit the
same trends.
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As a conclusion, we have shown in this work that a
model based on a local mass conservation criterion can
explain the scattered intensity distributions observed in
low-angle static light scattering experiments on aggrega-
tion processes in dense colloidal dispersions [24]. The
mass conservation criterion implies, by itself, that the
scattered intensity should be zero at zero scattering angle
and should present a peak at a nonzero wave vector, ir-
respective of any correlation which might exist among
the mutual positions of clusters. We have proposed a
specific form for the intracluster correlation function g (r)
which is only based on heuristic arguments. The chosen
form fits very well the data obtained in the earlier stages
of aggregation, whereas the description of the scaling re-
gime requires the introduction of an additional in-
gredient, an intercluster structure factor. Some of the

specific choices we have made for the fitting functions are
rather arbitrary, and there is clearly a need for a firmer
theoretical basis. The visibility of the peak in a real ex-
periment is connected with the fact that the peak position
g, should fall in the experimentally accessible range of
wave vectors. Our model provides an explanation for the
fact that earlier scattering experiments on colloidal ag-
gregation have failed to observe the peak in I(q).
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